

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

SEMESTER - III

PAPER CODE	SUBJECT NAME	THEORY HOURS	PRACTICAL HOURS	THEORY MARKS	PRACTICAL MARKS
DXET301	CARDIAC CYCLE &	45 Min	1 Hrs.	50	50
	ELECTRICAL				
	CONDUCTION				
	SYSTEM				
DXET302	RADIOLOGY AND	45 Min	1 Hrs.	50	50
	RADIOGRAPHIC				
	PROCEDURES				
DXET303	DARK ROOM	45 Min	1 Hrs.	50	50
	TECHNIQUE & FILM				
	PROCESSING				
DXET304	RECORDING OF ECG	45 Min	1 Hrs.	50	50
	IN NORMAL &				
	DISEASED		100		
	CONDITIONS				

CARDIAC CYCLE & ELECTRICAL CONDUCTION SYSTEM

THEORY

1. Introduction to the Heart

- Overview of the heart: location, size, and structure.
- Layers of the heart wall: epicardium, myocardium, endocardium.
- Heart chambers: atria and ventricles.
- Valves of the heart: atrioventricular (tricuspid & mitral) and semilunar (aortic & pulmonary).

2. Cardiac Cycle

- Definition: sequence of mechanical and electrical events in one heartbeat.
- Phases of cardiac cycle:
 - 1. **Atrial systole** atrial contraction & ventricular filling.
 - 2. **Ventricular systole** ventricular contraction, AV valve closure, blood ejection.
 - 3. **Diastole** relaxation phase, passive filling of atria & ventricles.
- Heart sounds (S1 & S2) and their correlation with valve closure.
- Timing and duration of cardiac cycle (normal adult heart rate).

Web: https://paramedicaleducationcouncil.com/ Email id: paramedicaleducationcouncil.com/ Emailto: <a href="

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

• Stroke volume, cardiac output, and ejection fraction (basic overview).

3. Electrical Conduction System of the Heart

- Definition and role in initiating & coordinating heartbeat.
- Components of conduction system:
 - o **SA (Sinoatrial) node** natural pacemaker.
 - o **AV (Atrioventricular) node** delay & transmission.
 - o **Bundle of His** pathway from AV node to ventricles.
 - o **Right & left bundle branches** conduction to respective ventricles.
 - o **Purkinje fibers** ventricular depolarization.

4. Generation & Propagation of Cardiac Impulses

- Mechanism of spontaneous depolarization in SA node.
- Transmission of impulses through atria \rightarrow AV node \rightarrow ventricles.
- Role of conduction system in synchronizing atrial and ventricular contraction.
- Basic understanding of action potential phases in cardiac cells (overview).

5. Electrocardiographic Correlation

- Relationship between electrical events & ECG waves:
 - \circ P wave \rightarrow atrial depolarization
 - o PR interval → conduction through AV node
 - o QRS complex → ventricular depolarization
 - o ST segment & T wave → ventricular repolarization
- Significance of cardiac cycle phases in ECG interpretation.
- Basic abnormalities related to conduction system: AV block, bundle branch block, arrhythmias (introductory).

6. Clinical Relevance

- Importance of understanding cardiac cycle for:
 - o Accurate ECG recording & interpretation.
 - o Timing of procedures like stress test & Holter monitoring.
 - o Identifying arrhythmias & conduction abnormalities.
- Awareness of factors affecting cardiac cycle: heart rate, blood pressure, autonomic nervous system influence.

PRACTICAL

Understanding Cardiac Cycle

1. Familiarization with cardiac anatomy

 Identification of heart chambers, valves, and major vessels using charts/models.

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

o Recognition of atrial and ventricular structures in correlation with ECG.

2. Phases of Cardiac Cycle Demonstration

- Visualization of atrial systole, ventricular systole, and diastole using models or animations.
- Correlation of mechanical events with heart sounds (S1 & S2).

3. Measurement of Pulse & Heart Rate

- o Recording radial, carotid, and apical pulse.
- o Correlation of pulse rate with cardiac cycle duration.

Electrical Conduction System Practicals

4. Identification of Conduction System Components

- SA node, AV node, Bundle of His, bundle branches, Purkinje fibers using models/diagrams.
- o Understanding of impulse transmission pathway through the heart.

5. ECG Correlation with Conduction System

- o Demonstration of P wave, PR interval, QRS complex, ST segment, and T wave.
- o Recording **normal ECG** of a volunteer and marking waveforms.
- o Observation of **time intervals**: PR interval, QRS duration, QT interval.

6. Arrhythmia Awareness (Demo Only)

- Demonstration of basic ECG abnormalities:
 - Bradycardia & tachycardia
 - AV block (first degree, second degree demo)
 - Bundle branch block (introductory)

Cardiac Cycle & ECG Recording

7. Stepwise ECG Recording

- Patient preparation & electrode placement.
- Recording 12-lead ECG.
- Ensuring proper calibration and artifact elimination.

8. Correlation of ECG with Cardiac Events

- Mapping P wave \rightarrow atrial depolarization \rightarrow atrial contraction.
- \circ Mapping QRS \rightarrow ventricular depolarization \rightarrow ventricular contraction.
- \circ Mapping T wave → ventricular repolarization → relaxation.

> Integrated Exercises

9. Heart Rate Calculation from ECG

- o Counting RR intervals & calculating beats per minute.
- Correlation of ECG-derived heart rate with pulse measurement.

10. Documentation & Reporting

- o Labeling ECG tracings with waveforms and intervals.
- Recording observations in practical logbook.
- o Case study discussions: linking conduction system defects to ECG changes.

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

RADIOLOGY AND RADIOGRAPHIC PROCEDURES

THEORY

1. Introduction to Radiology

- History and development of radiology.
- Importance and role of X-ray technician in hospitals.
- Types of radiology: diagnostic, interventional, therapeutic.
- Basic physics of X-rays: production, properties, and interactions with matter.

2. X-Ray Equipment

- Components of X-ray machine: X-ray tube, control panel, generator, collimator.
- Types of X-ray machines: stationary, mobile, portable, digital radiography systems (CR & DR).
- Accessories: grids, filters, cassettes, intensifying screens, bucky tables, erect stands.
- Maintenance and care of X-ray equipment.

3. Patient Preparation

- Patient identification and verification.
- Communication and consent.
- Removal of artifacts and preparation for specific radiographic procedures.
- Positioning techniques: supine, prone, erect, lateral, oblique.
- Special considerations: pediatric, geriatric, trauma, and ICU patients.

4. Radiographic Procedures

A. Routine Radiography

- Chest: PA, AP, lateral views.
- Abdomen: supine, erect, KUB.
- Skull and facial bones: PA, lateral, submentovertex, Waters' view.
- Spine: cervical, thoracic, lumbar AP and lateral views.
- Extremities: upper & lower limbs AP, lateral, oblique views.
- Pelvis and hip joint: AP, lateral views.

B. Contrast Studies (Awareness/Introductory)

- Barium swallow, barium meal, barium enema.
- Intravenous urography (IVU/IVP).
- Hysterosalpingography (HSG).
- Basic knowledge of contrast media and precautions.

Web: https://paramedicaleducationcouncil.com/ Email id: paramedicaleducationcouncil.com/ Emailto: <a href="

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

C. Specialized Procedures (Introductory Awareness)

- Fluoroscopy and digital subtraction angiography (DSA).
- Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) overview.
- Portable X-ray procedures in ICU and OT.

5. Image Processing & Quality Assurance

- Conventional film-screen radiography: film handling, developing, fixing, and drying.
- CR (Computed Radiography) and DR (Digital Radiography) workflow.
- Common errors in radiographs and their correction.
- Introduction to PACS (Picture Archiving & Communication System).
- Quality assurance in radiology repeat exposure reduction.

6. Radiation Safety

- Biological effects of X-ray radiation.
- Principles of radiation protection (Time, Distance, Shielding).
- Personal protective devices: lead apron, thyroid shield, gonadal shield.
- Safety measures for patient, staff, and public.
- Regulatory guidelines (AERB, ICRP basics).

7. Documentation and Reporting

- Labelling of radiographs.
- Maintenance of patient records and X-ray logbooks.
- Documentation of exposure parameters, positioning, and patient instructions.
- Ethical and legal responsibilities of the X-ray technician.

8. Clinical Relevance

- Correlation of radiographic findings with patient history.
- Importance of accurate positioning in diagnosis.
- Handling emergency cases in radiology (trauma, ICU).
- Awareness of limitations of different radiographic techniques.

PRACTICAL

> Equipment Familiarization

- 1. Identification of X-ray machine components:
 - o X-ray tube, control panel, generator, collimator.
- 2. Identification and handling of accessories:
 - o Cassettes, grids, intensifying screens, bucky table, erect stand.
- 3. Introduction to CR/DR systems and PACS (digital workflow).
- 4. Demonstration of radiation protection devices: lead aprons, thyroid shields, gloves.

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

> Patient Preparation & Safety

- 5. Verification of patient identity and consent.
- 6. Patient communication & instructions.
- 7. Removal of artifacts and preparation for specific radiographs.
- 8. Positioning techniques: supine, prone, erect, lateral, oblique.
- 9. Special patient care: pediatric, geriatric, trauma, ICU patients.

Radiographic Procedures – Routine X-rays

- 10. Chest X-ray: PA, lateral views.
- 11. Abdomen: supine, erect, KUB.
- 12. Skull and facial bones: PA, lateral, submentovertex, Waters' view.
- 13. Spine: cervical, thoracic, lumbar AP and lateral.
- 14. Extremities: upper & lower limbs AP, lateral, oblique.
- 15. Pelvis and hip joint: AP, lateral.

Radiographic Procedures - Special & Portable X-rays

- 16. Portable X-ray procedures in ICU/OT.
- 17. Awareness demonstration of contrast studies:
 - o Barium swallow, barium meal, barium enema, IVU/IVP, HSG.
- 18. Basic introduction to fluoroscopy, CT, MRI (demo only).

Image Processing & Quality Checks

- 19. Handling conventional film: developing, fixing, drying.
- 20. CR/DR workflow and image acquisition.
- 21. Identification and correction of common errors in radiographs.
- 22. Proper labelling and storage of radiographs.

Radiation Safety in Practicals

- 23. Use of personal protective equipment (lead apron, thyroid shield, gloves).
- 24. Safe distance & positioning for operator during exposure.
- 25. Demonstration of TLD badge use and monitoring.
- 26. Awareness of ALARA principle in practical settings.

Documentation & Reporting

- 27. Recording exposure parameters, patient position, and type of radiograph.
- 28. Maintaining X-ray logbook & PACS documentation.
- 29. Case-based discussion linking radiographs to patient history.

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

Integrated Clinical Exercises

- 30. Step-by-step practice of a full radiographic session:
 - Patient preparation → positioning → exposure → processing → documentation.
- 31. Mock drills for emergency/ICU portable X-ray situations.
- 32. Team exercises for patient handling, safety, and workflow efficiency.

DARK ROOM TECHNIQUE & FILM PROCESSING

THEORY

1. Introduction to Dark Room

- Purpose and importance of dark room in radiography.
- Types of dark rooms: conventional manual vs semi-automatic vs automatic processing.
- Basic layout: safe light, workbench, storage, processing area.
- Importance of temperature, ventilation, and humidity control.

2. X-Ray Film

- Types of X-ray films: conventional, single-emulsion, double-emulsion, screen film.
- Film structure: base, emulsion, protective coating.
- Sensitivity and speed of films.
- Storage, handling, and expiration of X-ray films.

3. Safe Light & Dark Room Illumination

- Concept of safe light and its characteristics (wavelength, intensity).
- Location of safe light in darkroom.
- Effects of incorrect safe light on film fogging.
- Testing safe light quality.

4. Film Handling

- Loading cassettes and removing exposed film.
- Care in handling to prevent scratches, fingerprints, and bending.
- Identification of film orientation, markers, and labels.
- Precautions to avoid double exposure.

5. Chemical Processing of X-ray Films

A. Manual Processing

Chemicals used: developer, fixer, water (rinsing).

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

- Preparation and mixing of chemicals.
- Temperature, time, and agitation control.
- Stepwise processing: development \rightarrow rinsing \rightarrow fixing \rightarrow washing \rightarrow drying.
- Common processing faults and their correction.

B. Automatic Processing

- Overview of automatic processors.
- Loading films into automatic processors.
- Maintenance and cleaning of automatic processors.
- Troubleshooting common automatic processing errors.

6. Quality Control & Assurance

- Factors affecting film quality: exposure, processing, storage.
- Film artifacts: scratches, static marks, chemical stains, fogging.
- Steps to ensure consistent high-quality radiographs.
- Periodic testing and preventive maintenance of dark room equipment.

7. Waste Management & Safety

- Disposal of used chemicals and fixer solutions.
- Environmental hazards of silver recovery and chemical effluents.
- Personal safety: gloves, aprons, ventilation.
- Avoiding contamination and chemical burns.

8. Documentation & Record Keeping

- Keeping records of chemical batches, expiry, and processing logs.
- Recording faults and corrective actions.
- Documentation of dark room maintenance and cleaning schedules.

PRACTICAL

Dark Room Familiarization

- 1. Identification of dark room layout:
 - o Safe light, workbench, chemical tanks, storage area.
- 2. Demonstration of **ventilation**, **temperature**, and **humidity control**.
- 3. Awareness of **personal safety**: gloves, aprons, eye protection.

> X-Ray Film Handling

- 4. Identification of film types: single-emulsion, double-emulsion, screen film.
- 5. Proper loading and unloading of cassettes.
- 6. Orientation, markers, and labeling of films.

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

7. Handling precautions: avoiding scratches, fingerprints, bending, and double exposure.

Safe Light Demonstration

- 8. Testing safe light quality and intensity.
- 9. Understanding effects of incorrect safe light: film fogging.
- 10. Placement of safe light in dark room for maximum safety.

Manual Film Processing

- 11. Preparation and mixing of chemicals: developer, fixer, water.
- 12. Stepwise processing of exposed film:
 - Development \rightarrow Rinsing \rightarrow Fixing \rightarrow Washing \rightarrow Drying.
- 13. Controlling temperature, timing, and agitation for optimal results.
- 14. Identification and correction of **manual processing faults**:
 - o Underdevelopment, overdevelopment, streaks, stains, fogging.

> Automatic Film Processing

- 15. Loading films into automatic processor.
- 16. Observing stepwise automatic processing.
- 17. Maintenance and cleaning of automatic processor.
- 18. Troubleshooting common errors in automatic processing.

Quality Control & Assurance

- 19. Identifying film artifacts: scratches, static marks, chemical stains.
- 20. Practice maintaining consistent film quality.
- 21. Comparison of manual vs automatic processed films.
- 22. Recording observations in practical logbook.

Waste Management & Safety

- 23. Safe handling and disposal of used chemicals.
- 24. Awareness of silver recovery and environmental hazards.
- 25. Maintaining cleanliness and hygiene in dark room.

Integrated Practical Exercises

- 26. Complete workflow exercise:
 - o Film exposure → cassette handling → manual/automatic processing → quality evaluation \rightarrow documentation.
- 27. Case-based problem-solving: correcting processing faults.
- 28. Demonstration of maintaining logs and recording chemical batch information.

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

RECORDING OF ECG IN NORMAL & DISEASED CONDITIONS

THEORY

1. Introduction to ECG

- Definition and importance of ECG in cardiac diagnosis.
- Overview of electrical activity of the heart.
- Principles of ECG recording: electrodes, leads, and paper calibration.
- Safety measures during ECG recording.

2. ECG Equipment & Leads

- Types of ECG machines: single-channel, multi-channel, 12-lead.
- Components: electrodes, lead wires, amplifier, display/recorder.
- Limb leads: I, II, III; augmented leads: aVR, aVL, aVF.
- Precordial (chest) leads: V1–V6.
- Preparation, placement, and precautions for electrodes.

3. Recording ECG in Normal Conditions

- Patient preparation: skin cleaning, electrode placement, rest conditions.
- Calibration of ECG machine (1 mV = 10 mm).
- Recording standard 12-lead ECG in normal healthy individuals.
- Identification of normal waveforms:
 - o P wave → atrial depolarization
 - o PR interval → conduction through AV node
 - o QRS complex → ventricular depolarization
 - o ST segment & T wave → ventricular repolarization
- Measurement of heart rate, rhythm, and intervals.

4. Recording ECG in Diseased Conditions

- ECG recording in patients with common cardiac conditions:
 - Arrhythmias: sinus tachycardia, sinus bradycardia, atrial fibrillation, atrial flutter, ventricular tachycardia.
 - Conduction abnormalities: AV block (first, second, third degree), bundle branch block.
 - Myocardial ischemia and infarction: ST elevation, ST depression, T wave inversion.
 - Other abnormalities: premature atrial/ventricular complexes, pacemaker rhythms.
- Adjustments needed during recording in diseased conditions.
- Safety precautions and patient monitoring during abnormal ECG recordings.

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

5. Documentation & Interpretation Basics

- Labelling ECG tracings: patient details, date, time, lead identification.
- Recognizing normal vs abnormal waveforms.
- Maintaining ECG record logbook.
- Basic guidelines for reporting to physician (non-diagnostic role).

6. Practical Considerations

- Handling ECG electrodes, cables, and machines hygienically.
- Preventing artifacts: muscle tremor, baseline drift, electrical interference.
- Special patient considerations: pediatric, geriatric, obese, ICU patients.
- Portable ECG recording in emergency/ICU setups.

PRACTICAL

> ECG Equipment Familiarization

- 1. Identification of ECG machine components: electrodes, lead wires, amplifier, display/recorder.
- 2. Familiarization with single-channel, multi-channel, and 12-lead machines.
- 3. Checking ECG machine calibration and battery/power supply.
- 4. Handling and cleaning of ECG electrodes and cables.

> Patient Preparation & Electrode Placement

- 5. Verification of patient identity and explanation of procedure.
- 6. Preparation of skin: cleaning, shaving if necessary, applying electrode gel/pads.
- 7. Correct placement of limb leads: RA, LA, RL, LL.
- 8. Correct placement of precordial leads: V1–V6.
- 9. Special considerations for pediatric, geriatric, obese, or ICU patients.

> Recording ECG in Normal Conditions

- 10. Calibration of ECG machine: 1 mV = 10 mm, standard paper speed 25 mm/sec.
- 11. Recording 12-lead ECG in a healthy volunteer.
- 12. Identification of normal ECG waves: P wave, PR interval, QRS complex, ST segment, T wave.
- 13. Measuring heart rate, rhythm, and intervals.
- 14. Observation and correction of common artifacts: baseline drift, muscle tremor, electrical interference.

Recording ECG in Diseased Conditions

15. Demonstration/recording in patients with common cardiac conditions:

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

- Arrhythmias: sinus tachycardia, sinus bradycardia, atrial fibrillation, atrial flutter, ventricular tachycardia.
- **Conduction abnormalities**: AV block (1st, 2nd, 3rd degree), bundle branch block.
- **Ischemic changes**: ST elevation, ST depression, T wave inversion.
- **Other abnormalities**: premature atrial/ventricular complexes, pacemaker rhythms.
- 16. Adjustments needed during recording in diseased conditions.
- 17. Ensuring patient safety during abnormal ECG recording.

> Portable & Emergency ECG Recording

- 18. Demonstration of portable ECG recording in ICU/OT/emergency setups.
- 19. Quick setup, electrode placement, and safe operation under emergency conditions.
- 20. Troubleshooting issues during portable ECG recording.

Documentation & Reporting

- 21. Labelling ECG recordings with patient details, date, time, and lead identification.
- 22. Maintaining ECG logbook and filing records.
- 23. Noting observations, abnormalities, and technician remarks (non-diagnostic).

> Integrated Practical Exercises

- 24. Full ECG recording session: patient prep \rightarrow electrode placement \rightarrow recording \rightarrow observation \rightarrow documentation.
- 25. Case-based exercises for abnormal ECG patterns.
- 26. Artifact recognition and correction exercises.

Web: https://paramedicaleducationcouncil.com/ Email id: paramedicaleducationcouncil.com/ Emailto: <a href="