

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

SEMESTER - IV

PAPER	SUBJECT NAME	THEORY	PRACTICAL	THEORY	PRACTICAL
CODE		HOURS	HOURS	MARKS	MARKS
DXET401	ECG	45 Min	1 Hrs.	50	50
	INTERPRETATION				
DXET402	ADVANCED	45 Min	1 Hrs.	50	50
	RADIOLOGY				
	PROCEDURE				
DXET403	ADVANCED	45 Min	1 Hrs.	50	50
	RADIATION				
	PROTECTION &				
	QUALITY CONTROL			1	
DXET404	RADIOGRAPHIC	45 Min	1 Hrs.	50	50
	TECHNIQUES AND			1	
	DIAGNOSTIC				

ECG INTERPRETATION

THEORY

1. Introduction to ECG Interpretation

- Importance of ECG in diagnosis and patient management.
- Difference between ECG recording and interpretation.
- Understanding ECG paper: time, voltage, calibration.
- Review of normal cardiac cycle and conduction system relevant to ECG.

2. Normal ECG

- Components of ECG waveforms: P wave, PR interval, QRS complex, ST segment, T wave, QT interval.
- Normal durations and amplitudes:
 - o P wave: 0.08-0.12 sec
 - o PR interval: 0.12-0.20 sec
 - o QRS complex: 0.06–0.10 sec
 - o QT interval: 0.36–0.44 sec
- Normal ECG patterns for adult, pediatric, and geriatric patients.

3. Heart Rate and Rhythm Analysis

- Methods of heart rate calculation from ECG:
 - Small box method, large box method, 6-second method.
- Assessment of rhythm:
 - Regular vs irregular rhythms.
 - o Sinus rhythm, sinus arrhythmia, sinus tachycardia, sinus bradycardia.

Web: https://paramedicaleducationcoung

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

4. Abnormalities of P Wave and PR Interval

- Atrial enlargement: right and left atrial abnormalities.
- AV conduction abnormalities:
 - o First-degree AV block
 - Second-degree AV block (Mobitz I & II)
 - o Third-degree AV block
- Pre-excitation syndromes: WPW syndrome (overview).

5. QRS Complex Abnormalities

- Ventricular conduction defects: bundle branch blocks (right & left).
- Ventricular hypertrophy: right and left.
- Ventricular ectopics: premature ventricular contractions (PVCs).

6. ST Segment and T Wave Changes

- Myocardial ischemia and infarction patterns:
 - o ST elevation, ST depression
 - o T wave inversion, hyperacute T waves
- Pericarditis and other ST/T abnormalities (introductory).

70 Arrhythmias

- Atrial arrhythmias: atrial fibrillation, atrial flutter.
- Supraventricular tachycardia.
- Ventricular arrhythmias: ventricular tachycardia, ventricular fibrillation.
- Recognition of pacemaker rhythms.

8. Miscellaneous ECG Findings

- Electrolyte disturbances: hyperkalemia, hypokalemia (basic patterns).
- Drug effects on ECG (digitalis, antiarrhythmics overview).
- Artifacts and technical errors affecting ECG interpretation.

9. Clinical Correlation

- Linking ECG changes to patient symptoms and clinical history.
- Identifying **emergency ECG findings** requiring immediate physician attention.
- Awareness of limitations: DXET technician's role is **non-diagnostic but supportive**.

PRACTICAL

ECG Equipment Familiarization

- 1. Identification of ECG machine components relevant to interpretation.
- 2. Checking calibration and paper speed: standard 25 mm/sec, 10 mm/mV.

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

3. Demonstration of ECG printout handling and storage.

➤ Normal ECG Analysis

- 4. Identification of ECG waveforms: P wave, PR interval, QRS complex, ST segment, T wave, QT interval.
- 5. Measurement of intervals and amplitudes: PR, QRS, QT.
- 6. Determination of heart rate using small box, large box, and 6-second methods.
- 7. Assessment of rhythm: regular vs irregular, sinus rhythm verification.

> Interpretation of Common Abnormalities

8. P Wave & PR Interval Changes:

o Right & left atrial enlargement.

First-degree, second-degree, third-degree AV block.

o Pre-excitation (WPW) overview.

9. **QRS Complex Abnormalities:**

- o Right and left bundle branch block.
- Ventricular hypertrophy patterns.
- o Premature ventricular contractions (PVCs).

10. ST Segment & T Wave Changes:

- o Myocardial ischemia: ST depression, T wave inversion.
- o Myocardial infarction: ST elevation, pathological Q waves.
- Pericarditis (introductory).

11. Arrhythmias:

- Atrial fibrillation and atrial flutter.
- Supraventricular tachycardia (SVT).
- o Ventricular tachycardia, ventricular fibrillation.
- Pacemaker rhythms.

12. Electrolyte & Drug Effects:

- o Hyperkalemia and hypokalemia ECG patterns.
- Overview of drug-induced ECG changes.

Artifact Recognition and Correction

- 13. Identification of common ECG artifacts: baseline drift, muscle tremor, electrical interference.
- 14. Corrective measures for recording errors.

Clinical Correlation Exercises

- 15. Case-based exercises: linking ECG abnormalities to patient history and symptoms.
- 16. Prioritization of emergency ECG findings requiring immediate physician attention.
- 17. Documentation of findings in logbook (technician notes, non-diagnostic).

Integrated Practical Exercises

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

18. Full ECG interpretation session:

- Review normal ECG tracing.
- o Analyze abnormal ECG cases (arrhythmias, ischemia, conduction defects).
- Measure intervals, heart rate, and rhythm.
- 19. Comparative analysis of multiple ECGs to identify progression of disease or recovery.

ADVANCED RADIOLOGY PROCEDURE

THEORY

1. Introduction to Advanced Radiology

- Definition and scope of advanced radiology procedures.
- Role of DXET in specialized imaging under supervision.
- Overview of modern imaging modalities and techniques.
- Safety and ethical considerations in advanced radiology.

2. Fluoroscopy

- Principles of fluoroscopy and real-time imaging.
- Components of a fluoroscopic unit.
- Clinical applications: GI studies, urinary tract, barium swallow.
- Radiation safety considerations specific to fluoroscopy.

3. Contrast Studies

- Introduction to contrast media: types, indications, contraindications.
- Gastrointestinal contrast studies:
 - o Barium swallow, barium meal, barium enema.
- Urinary system: intravenous urography (IVU), retrograde pyelography.
- Gynecological studies: hysterosalpingography (HSG).
- Basic handling, storage, and safety precautions with contrast media.

4. Computed Tomography (CT)

- Basic principle of CT imaging.
- CT components: gantry, X-ray tube, detectors, computer system.
- Patient preparation for CT scans.
- Common CT protocols: head, chest, abdomen, and pelvis.
- DXET technician's role: positioning, patient care, safety under supervision.

5. Magnetic Resonance Imaging (MRI)

- Basic principles of MRI and magnetic field safety.
- MRI components: magnet, gradient coils, RF coil.
- Patient screening for contraindications (pacemaker, metal implants).

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

Technician's role: patient positioning, coil placement, safety supervision.

6. Ultrasound Imaging

- Principles of ultrasonography.
- Equipment components: transducer, monitor, control panel.
- DXET role in preparing patient and assisting radiologist.
- Safety and hygiene considerations.

7. Digital Radiography and PACS

- CR (Computed Radiography) and DR (Digital Radiography) workflow.
- PACS (Picture Archiving & Communication System) overview.
- Image acquisition, storage, and retrieval.
- Technician's responsibilities in image quality and documentation.

8. Interventional Radiology

- Introduction to minimally invasive procedures using imaging guidance.
- Examples: angiography, biopsy, catheter placements.
- DXET role: assisting radiologist, patient preparation, safety precautions.

9. Radiation Safety in Advanced Procedures

- ALARA principle application in fluoroscopy, CT, and interventional radiology.
- Use of lead aprons, shields, and TLD badges in advanced imaging areas.
- Dose monitoring and patient/staff safety protocols.

10. Documentation & Reporting

- Maintaining logbooks for advanced imaging procedures.
- Proper labelling of images and records.
- Ethical and legal responsibilities of DXET in advanced procedures.

PRACTICAL

> Equipment Familiarization

- 1. Identification of advanced radiology equipment:
 - Fluoroscopy unit, CT scanner, MRI, ultrasound machine.
- 2. Components of each unit and their functions.
- 3. CR (Computed Radiography) and DR (Digital Radiography) systems overview.
- 4. PACS (Picture Archiving & Communication System) workflow and image handling.

> Patient Preparation & Positioning

5. Verification of patient identity and explanation of procedure.

Web: https://paramedicaleducationcouncil.com/ Email id: paramedicaleducationcouncil@gmail.com/

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

- 6. Patient preparation for different procedures: fasting, hydration, contrast administration.
- 7. Correct positioning for:
 - Fluoroscopy (barium studies, urinary studies)
 - o CT scans (head, chest, abdomen, pelvis)
 - o MRI scans (head, spine, extremities)
 - Ultrasound (abdomen, pelvic, obstetric)
- 8. Special considerations for pediatric, geriatric, obese, and ICU patients.

Fluoroscopy Practical

- 9. Setting up fluoroscopic unit under supervision.
- 10. Patient positioning and movement for real-time imaging.
- 11. Observation of image quality, radiation safety measures, and lead shielding.
- 12. Basic demonstration of GI and urinary fluoroscopy procedures.

Contrast Studies Practical

- 13. Handling and storage of contrast media.
- 14. Demonstration of barium swallow, barium meal, barium enema (simulation or under supervision).
- 15. Intravenous urography (IVU) patient positioning.
- 16. Hysterosalpingography (HSG) procedure overview and patient prep.
- 17. Safety precautions and emergency response for contrast reactions.

> Computed Tomography (CT) Practical

- 18. Familiarization with CT scanner components.
- 19. Patient positioning for head, chest, abdomen, and pelvis CT scans.
- 20. Observation of CT protocols and slice selection under supervision.
- 21. Radiation safety and shielding for staff and patient.

MRI Practical (Demonstration/Observation)

- 22. Screening patients for contraindications (implants, pacemakers, metallic objects).
- 23. Patient positioning and coil placement.
- 24. Observing scan protocol and image acquisition.
- 25. Safety precautions: noise protection, magnetic field safety.

Ultrasound Practical (Assisted Observation)

- 26. Familiarization with transducer and control panel.
- 27. Patient positioning and scanning procedure under radiologist supervision.
- 28. Handling gel and hygiene precautions.
- 29. Observation of normal and abnormal findings (if possible).

Radiation Safety

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

- 30. Application of ALARA principle in fluoroscopy, CT, and portable studies.
- 31. Use of lead aprons, shields, and TLD badges.
- 32. Dose monitoring and documentation.

Documentation & Reporting

- 33. Labelling images and maintaining proper records.
- 34. Recording exposure parameters, patient position, and contrast media used.
- 35. Maintaining logbooks for advanced radiology procedures.

Integrated Exercises

- 36. Full workflow demonstration: patient prep \rightarrow positioning \rightarrow exposure \rightarrow image acquisition \rightarrow documentation.
- 37. Case-based exercises for simulated advanced radiology scenarios.
- 38. Safety drills and emergency response simulations.

ADVANCED RADIATION PROTECTION & QUALITY CONTROL

THEORY

1. Introduction

- Definition, scope, and importance of radiation protection in modern imaging.
- Role of X-Ray & ECG technicians in radiation safety and quality assurance.
- Regulatory authorities: ICRP (International Commission on Radiological Protection), AERB (Atomic Energy Regulatory Board, India).

2. Radiation Physics & Biological Effects

- Interaction of X-rays with matter.
- Types of radiation (primary, scattered, leakage).
- Biological effects of radiation: deterministic vs stochastic.
- Radiation dose units: Gray (Gy), Sievert (Sy), Becquerel (Bq).

3. Principles of Radiation Protection

- ALARA principle (As Low As Reasonably Achievable).
- Time, distance, and shielding as protective measures.
- Personal protective equipment (PPE): lead apron, thyroid collar, lead glasses, gonad shields.
- Staff protection vs patient protection.

4. Radiation Protection in Imaging Modalities

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

- Radiography: collimation, filtration, exposure optimization.
- Fluoroscopy: dose reduction techniques, pulsed fluoroscopy.
- CT: dose modulation, shielding, pediatric considerations.
- Advanced imaging: digital radiography dose management.

5. Radiation Monitoring

- Personal dosimeters: film badge, TLD (Thermoluminescent Dosimeter), OSL (Optically Stimulated Luminescence).
- Area monitoring devices.
- Dose limits for radiation workers and patients.
- · Record-keeping and dose reporting.

6. Quality Control in Radiology

- Definition and importance of quality control (QC).
- Acceptance testing, routine testing, and preventive maintenance.
- QC tests for X-ray machines: kVp accuracy, timer accuracy, mA linearity, exposure reproducibility.
- QC in CT: image noise, contrast resolution, slice thickness, dose calibration.
- QC in fluoroscopy: resolution, contrast, and dose measurement.

7. Quality Assurance in Film & Digital Systems

- QC in darkroom: safelight, fog test, film-screen contact test.
- QC in CR/DR systems: image uniformity, dead pixel test, erasure cycle test.
- PACS (Picture Archiving and Communication System) data quality.

8. Emergency Preparedness & Radiation Incidents

- Common radiation hazards and accidental exposures.
- Emergency protocols in case of overexposure, equipment failure, or contrast reaction.
- Role of technician in first response and reporting.

9. Legal, Ethical & Regulatory Aspects

- AERB guidelines for diagnostic radiology.
- International radiation protection standards.
- Legal responsibilities of technicians.
- Ethical aspects of patient care during radiation exposure.

10. Quality Improvement & Documentation

Continuous quality improvement programs in radiology.

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

- Maintaining radiation logbooks.
- QC audit and documentation practices.
- Role of technician in clinical governance.

PRACTICAL

Radiation Protection Practicals

1. Identification & Handling of PPE

- o Lead apron, thyroid collar, lead glasses, gonad shields.
- o Proper storage and inspection for cracks/damage.

2. Radiation Protection Devices

- o Demonstration of collimators, filters, and grids.
- Use of shielding barriers (lead-lined walls, screens).

3. Patient Protection

- o Correct positioning with minimal exposure.
- Use of gonadal shielding in pelvic X-rays.
- Pediatric dose reduction techniques.

4. Staff Protection

- o Safe positioning during portable X-rays and fluoroscopy.
- Use of lead barriers and distance measures.
- Rotational duties in high-radiation areas.

Radiation Monitoring Practicals

5. Personal Dosimeter Use

- o Demonstration of film badge, TLD, OSL dosimeters.
- Wearing, storage, and handling procedures.
- o Interpreting dose reports.

6. Area Monitoring

- Placement of area radiation monitors in X-ray and CT rooms.
- Checking for leakage radiation around X-ray tube housing.

Quality Control (QC) in X-Ray

7. X-Ray Equipment QC Tests (under supervision)

- kVp accuracy test.
- o Timer accuracy check.
- o mA linearity and reproducibility test.
- o Collimator and beam alignment test.
- Half-Value Layer (HVL) measurement for beam quality.

8. Darkroom QC Tests (for film-based systems)

- Safelight fog test.
- o Film-screen contact test.
- o Processor QC: temperature, chemical strength, replenishment.

QC in Digital Imaging (CR/DR)

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

- 9. Image uniformity test.
- 10. Dead pixel/line detection on DR detectors.
- 11. Erasure cycle test in CR systems.

PACS workflow validation: image transfer, storage, retrieval.

> QC in CT & Fluoroscopy

12. **CT QC Tests** (observation/demo)

- Slice thickness accuracy.
- Image noise and uniformity.
- Contrast resolution check.
- Dose output measurement.

13. Fluoroscopy QC

- Resolution and contrast checks.
- Entrance surface dose measurement.
- Pulsed fluoroscopy dose reduction demo.

Emergency & Safety Drills

- 14. Handling suspected over-exposure incident.
- 15. Demonstration of safe evacuation in case of radiation accident.
- 16. First-aid measures for contrast reaction during advanced imaging.
- 17. Documentation of radiation incidents in logbooks.

Documentation & Logbook Maintenance

- 18. Recording daily QC checks.
- 19. Maintaining radiation exposure records of staff and patients.
- 20. Preparing QA (Quality Assurance) reports under supervisor guidance.

RADIOGRAPHIC TECHNIQUES AND DIAGNOSTIC

THEORY

1. Introduction to Radiographic Techniques

- Definition, scope, and importance of diagnostic radiography.
- Role of the X-Ray & ECG Technician in diagnosis.
- Overview of conventional vs modern radiographic methods.

2. Patient Preparation & Positioning

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

- General patient preparation for radiography.
- Immobilization techniques and use of positioning aids.

Positioning terminology: AP, PA, lateral, oblique, axial, tangential.

• Importance of correct positioning for diagnostic accuracy.

3. Radiographic Techniques of the Skeletal System

- Skull and facial bones.
- Spine: cervical, thoracic, lumbar, sacrum, coccyx.
- Upper limb: shoulder, humerus, elbow, wrist, hand.
- Lower limb: pelvis, hip, femur, knee, ankle, foot.
- Joints: specialized views (e.g., intercondylar, skyline).

4. Radiographic Techniques of the Thorax

- Chest X-ray (PA, lateral, oblique).
- Special chest views: lordotic, expiratory, decubitus.
- Diagnostic importance in respiratory and cardiac diseases.

5. Radiographic Techniques of the Abdomen & Pelvis

- Plain abdominal radiography.
- Supine and erect abdominal studies.
- Special procedures:
 - o Barium meal, barium enema.
 - o Intravenous urography (IVU).
 - Hysterosalpingography (HSG).

6. Radiographic Techniques of the Head & Neck

- Skull (AP, lateral, Towne's, Waters' view).
- Paranasal sinuses.
- Orbit, mandible, TM joint.
- Cervical spine and soft tissue neck.

7. Contrast Radiographic Techniques

- Contrast media: types, preparation, precautions.
- GI tract: barium swallow, barium meal follow-through.
- Urinary system: IVU, retrograde pyelography.
- Biliary system: cholecystography (overview).
- Gynecological studies (HSG).

8. Advanced Radiographic Techniques

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

- Fluoroscopy: principles and diagnostic applications.
- CT basics in diagnostic radiography.
- MRI overview in musculoskeletal and neuroimaging.

Ultrasound overview for abdomen and pelvis.

9. Radiographic Pathology & Diagnostic Correlation

- Recognition of normal vs abnormal radiographs.
- Common pathological conditions detectable on X-ray:
 - o Bone fractures, dislocations, arthritis, bone tumors.
 - o Pneumonia, tuberculosis, pleural effusion, lung cancer.
 - o Intestinal obstruction, renal calculi, gallstones.
- Case-based interpretation exercises (technician level).

10. Radiation Safety in Diagnostic Radiography

- Application of ALARA in diagnostic imaging.
- Dose optimization for skeletal, chest, abdominal, and pediatric studies.
- Patient shielding and exposure minimization.
- Technician safety protocols.

11. Documentation & Quality Assurance

- Recording patient details, exposure factors, and positioning.
- Maintaining logbooks for diagnostic radiology procedures.
- Quality assurance in radiographic imaging.
- Ethical and legal considerations in diagnostic imaging.

PRACTICAL

> Equipment Orientation

- 1. Identification of parts of X-ray machine (tube, collimator, control panel, Bucky, grids).
- 2. Handling of cassettes, screens, CR/DR plates.
- 3. Use of positioning aids: sponges, straps, immobilizers.
- 4. Calibration and safety checks before use.

> Patient Care & Preparation

- 5. Patient identity verification and explanation of procedure.
- 6. Preparation for skeletal, chest, abdominal, and contrast studies.
- 7. Demonstration of immobilization techniques.
- 8. Use of lead shielding for patient protection.

> Skeletal Radiography Practicals

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

9. Positioning for upper limb radiographs: hand, wrist, forearm, elbow, humerus, shoulder.

Positioning for lower limb radiographs: foot, ankle, knee, femur, pelvis, hip.

- 10. Positioning for spine radiographs: cervical, thoracic, lumbar, sacrum, coccyx.
- 11. Skull radiographs: AP, lateral, Towne's, Waters' views.

➤ Thoracic Radiography Practicals

- 12. Chest radiographs: PA, lateral, oblique.
- 13. Special chest views: lordotic, expiratory, decubitus.
- 14. Demonstration of portable/ICU chest X-rays.

➤ Abdominal & Pelvic Radiography Practicals

- 15. Supine and erect abdominal X-rays.
- 16. Positioning for urinary tract studies (IVU, retrograde pyelography demo).
- 17. Gynecological study (HSG demonstration).

Contrast Study Practicals

- 18. Preparation and safe handling of contrast media.
- 19. Demonstration of barium swallow and barium meal positioning.
- 20. Barium enema patient preparation and positioning.
- 21. Observation of contrast flow in fluoroscopy.

Advanced Radiography (Observation/Demonstration)

- 22. Fluoroscopy positioning and patient safety measures.
- 23. CT basic positioning for head, chest, abdomen.
- 24. MRI positioning demonstration (if available).
- 25. Ultrasound preparation and patient positioning.

Radiographic Pathology Identification

- 26. Recognition of fractures and dislocations on radiographs.
- 27. Identifying chest abnormalities: pneumonia, TB, pleural effusion.
- 28. Recognition of urinary calculi and intestinal obstruction.
- 29. Case-based exercises: differentiating normal vs abnormal films.

Radiation Safety in Practice

- 30. Demonstration of ALARA principle during routine and special radiography.
- 31. Use of collimators, filters, grids for dose reduction.
- 32. Proper use of personal protective equipment (PPE).

Documentation & Logbook

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

33. Recording exposure factors for each study.

Maintaining radiographic procedure logbook.

34. Proper film/digital image labelling and PACS entry.

 $Web: \underline{https://paramedicaleducationcouncil.com/} \quad \underline{Emailid: \underline{paramedicaleducationcouncil@gmail.com}} \\$