

PARAMEDICAL EDUCATION & TRAINING COUNCIL

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

SEMESTER - II

PAPER	SUBJECT NAME	THEORY	PRACTICAL	THEORY	PRACTICAL
CODE		HOURS	HOURS	MARKS	MARKS
DMRT201	CLINICAL	45 Min	1 Hrs.	50	50
	RADIOGRAPHY				
DMRT202	RADIATION	45 Min	1 Hrs.	50	50
	PATHOLOGY				
DMRT203	RADIATION THERAPY MACHINES	45 Min	1 Hrs.	50	50
DMRT204	RADIOGRAPHIC PHOTOGRAPHY	45 Min	1 Hrs.	50	50

CLINICAL RADIOGRAPHY

THEORY

1. Intoduction to Clinical Radiography

- Definition, scope, and importance of clinical radiography
- Role of a radiographer in patient diagnosis and treatment
- Integration of radiography with other diagnostic modalities
- Workflow in a clinical radiology department

2. Radiographic Anatomy & Positioning

- Skeletal System Radiographic anatomy of:
 - Skull & facial bones
 - Spine cervical, thoracic, lumbar, sacrum, coccyx
 - o Thorax ribs, sternum, clavicle, scapula
 - o Upper limb shoulder, humerus, elbow, forearm, wrist, hand
 - o Lower limb pelvis, hip, femur, knee, ankle, foot
- Soft Tissues Lungs, heart, abdomen, urinary tract
- Special Radiographic Views Oblique, tangential, axial, lateral decubitus, weightbearing views

3. General Radiographic Techniques

- Patient preparation and consent
- Positioning principles anatomical planes, centering points
- Immobilization techniques
- Exposure factor selection (kVp, mA, time)
- Use of grids, cones, and collimators
- Image receptor selection film, CR, DR

4. Specialized Radiographic Procedures

• Contrast Media in Radiography

- Types (barium, iodine-based, air, CO₂)
- Indications & contraindications
- o Preparation, administration routes, adverse reactions

Contrast Studies

- o Gastrointestinal tract barium swallow, meal, follow-through, enema
- o Genitourinary system IVP, MCU, RGU
- Hysterosalpingography (HSG)
- Myelography, sialography, arthrography

5. Radiography of Body Systems

• Chest Radiography

- Routine PA & AP
- o Lateral, oblique, lordotic views
- Pediatric chest radiography

Abdominal Radiography

- Erect, supine, decubitus views
- KUB studies

• Skeletal Radiography

- Trauma series for suspected fractures
- Special projections for orthopedic evaluation

Spine Radiography

- o Cervical AP, lateral, oblique
- o Thoracic & lumbar AP, lateral
- Scoliosis series

6. Operation Theatre Radiography

- Role of radiographer in OT
- Use of mobile X-ray units in OT
- C-arm fluoroscopy operation & safety precautions
- Aseptic techniques in the sterile OT environment

7. Emergency & Trauma Radiography

- Principles of radiography in casualty settings
- Spinal injury precautions
- Bedside radiography for critically ill patients
- Portable chest and limb radiography

8. Pediatric Radiography

- Patient handling and immobilization for infants and children
- Radiation protection in pediatric imaging
- Common pediatric radiographic exams

9. Geriatric Radiography

- Patient positioning challenges in elderly patients
- Adjustments in exposure for osteoporosis & degenerative changes
- Fall-risk management during procedures

10. Quality Control & Image Evaluation

- Identifying positioning errors
- Film faults and retake minimization
- · Quality control tests in radiography
- Record keeping & PACS image management

11. Radiation Protection in Clinical Practice

- ALARA principle
- Protective devices and lead barriers
- Radiation monitoring for staff
- Safe exposure practices for pregnant patients

12. Professional & Ethical Considerations

- Patient confidentiality & informed consent
- Communication skills in clinical radiography
- Legal aspects of radiographic practice

PRACTICAL

> Patient Preparation & Positioning

- Identifying the patient & verifying requisition forms
- Explaining the procedure to the patient
- Removing artifacts (jewelry, belts, clothing with metal)
- Positioning the patient according to anatomical planes:
 - o Sagittal, coronal, transverse planes identification
 - Use of immobilization devices
- Practicing correct centering & collimation

Radiographic Positioning - Skeletal System

Upper Limb

- AP & lateral views: hand, wrist, forearm, elbow, humerus
- Shoulder girdle: AP, lateral, axial views
- Clavicle: AP & axial
- Scapula: AP & lateral

Lower Limb

• AP & lateral views: foot, ankle, tibia-fibula, knee

- Special knee projections: skyline, tunnel
- Femur: AP & lateral
- Pelvis & hip joints: AP pelvis, lateral hip

Spine

- Cervical spine: AP, lateral, oblique
- Thoracic spine: AP & lateral
- Lumbar spine: AP, lateral, oblique
- Sacrum & coccyx

Chest & Thorax

- Chest PA & lateral
- Special views: lordotic, decubitus
- Sternum, ribs: AP/PA & oblique

Skull & Facial Bones

- Skull: AP, lateral, Towne's, Water's, Caldwell's
- Facial bones: PA, lateral
- Sinuses: Water's, Caldwell's, lateral
- Mandible: AP, oblique, panoramic (if facility available)

Contrast Study Procedures (Observation & Participation)

Gastrointestinal Tract

- o Barium swallow
- o Barium meal
- Barium follow-through
- o Barium enema

Urinary System

- Intravenous urography (IVU)
- Micturating cystourethrogram (MCU)
- Retrograde urethrogram (RGU)

Other Special Procedures

- Hysterosalpingography (HSG)
- Myelography
- Arthrography
- Sialography

➤ Mobile & Portable Radiography

- Bedside chest radiography in ICU
- Bedside limb X-rays for trauma patients
- Handling & positioning in restricted spaces
- Mobile unit safety protocols

Operation Theatre (OT) Radiography

• Use of **C-arm fluoroscopy**

- Orthopedic OT imaging during fracture fixation
- Sterile handling of equipment & accessories
- Radiation protection for surgical team

> Pediatric & Geriatric Imaging

- Patient immobilization methods for infants & children
- Special considerations in elderly patient handling
- Dose adjustment for pediatric & geriatric cases

➤ Image Evaluation & Fault Analysis

- Identifying correct positioning vs. common errors
- Checking image quality (density, contrast, sharpness)
- Recognizing motion blur, artifacts, and improper exposure
- Suggesting corrections and retake protocols

Radiation Safety Practical

- Use of lead aprons, thyroid shields, lead gloves
- Correct collimation & beam restriction
- Use of personal dosimeter (TLD badge)
- Safe positioning during exposure

Logbook & Case Documentation

- Maintaining a **practical logbook** with:
 - Date
 - Patient ID (coded)
 - Exam type & projection taken
 - Exposure parameters used
 - Remarks on image quality
- Weekly evaluation by faculty/supervisor

Departmental Workflow & PACS

- Registering patient details in RIS/PACS
- Retrieving and reviewing previous images
- Sending completed studies to reporting radiologist
- Printing or archiving images as per protocol

RADIATION PATHOLOGY

THEORY

1. Introduction to Pathology

- Definition & scope of pathology
- General principles of disease processes
- Cellular responses to injury:

- Cell injury (reversible & irreversible)
- Cell death (necrosis, apoptosis)
- o Cellular adaptations (hypertrophy, hyperplasia, atrophy, metaplasia)

2. Inflammation & Repair

- Acute inflammation: causes, vascular & cellular events
- Chronic inflammation: causes, granulomatous inflammation
- Chemical mediators of inflammation
- Healing & repair:
 - o Regeneration & fibrosis
 - o Factors influencing wound healing

3. Neoplasia

- Definition, classification of tumors (benign vs malignant)
- Characteristics & behavior of tumors
- Etiology of cancer: genetic & environmental factors
- Metastasis & modes of spread
- Tumor grading & staging
- Common cancers relevant to radiology:
 - o Lung
 - Breast
 - Cervix
 - Prostate
 - Bone tumors

4. Basic Concepts of Radiation Pathology

- Interaction of ionizing radiation with living tissue
- Determinants of radiation injury:
 - Type & energy of radiation
 - Total dose & dose rate
 - Area of exposure
 - Oxygen effect
 - o Radiosensitivity of tissues (Law of Bergonie & Tribondeau)

5. Radiation Effects at Cellular & Molecular Level

- DNA damage: single & double strand breaks, cross-linking, base alterations
- Chromosomal aberrations
- Radiation effects on cell cycle
- Mechanisms of repair after radiation injury

6. Acute Radiation Syndrome (ARS)

• Hematopoietic syndrome

- Gastrointestinal syndrome
- Neurovascular syndrome
- Stages of ARS: prodromal, latent, manifest illness, recovery/death
- Clinical features & management principles

7. Deterministic & Stochastic Effects

- Deterministic (threshold) effects:
 - o Skin erythema, desquamation, epilation
 - Cataracts
 - Sterility
- Stochastic (probabilistic) effects:
 - Carcinogenesis
 - Genetic mutations

8. Radiation Effects on Specific Organ Systems

- Skin & appendages
- Blood & bone marrow
- Gastrointestinal tract
- Lungs
- Liver & kidneys
- Endocrine glands
- Eye (lens)
- Nervous system
- Reproductive system

9. Fetal & Developmental Effects of Radiation

- Radiation hazards during pregnancy
- Stages of embryonic/fetal radiosensitivity
- Possible effects: growth retardation, congenital malformations, mental retardation, carcinogenesis

10. Late Effects of Radiation

- Fibrosis
- Organ atrophy
- Vascular damage
- Radiation-induced malignancies

11. Radiation Pathology in Therapeutic Context

- Pathological changes in tissues post-radiotherapy
- Tolerance doses of organs
- Management of radiation-induced injuries in cancer patients

12. Radiation Protection Principles in Pathology

- Justification, optimization, dose limitation
- ALARA principle
- Protective devices & shielding
- Use of personal dosimeters

PRACTICAL

Introduction to Pathology Laboratory Practices

- Familiarization with pathology lab equipment
- Safety rules for handling biological specimens & slides
- Preparation of histopathology slides (overview)

Microscopy & Slide Observation

- Use of light microscope
- Identification of normal histological features of key organs (skin, liver, lung, kidney, bone marrow, etc.)
- Observation of pathological changes under microscope

> Demonstration of Cellular Changes

- Microscopic slides showing:
 - o Reversible cell injury
 - Necrosis types (coagulative, liquefactive, caseous, fat)
 - Apoptosis
 - o Cellular adaptations (hypertrophy, atrophy, hyperplasia, metaplasia)

> Inflammation & Repair

- Slides & gross specimens of acute inflammation (appendicitis, abscess)
- Slides of chronic inflammation (tuberculosis, granulomas)
- Demonstration of wound healing stages

> Tumor Pathology

- Slides & gross specimens of benign tumors (e.g., lipoma, adenoma)
- Slides of malignant tumors (e.g., squamous cell carcinoma, adenocarcinoma)
- Observation of tumor grading & staging patterns
- X-ray / CT / MRI images showing tumor masses

> Radiation Effects on Cells & Tissues

- Microscopic & gross specimens of radiation injury to:
 - o Skin (erythema, ulceration)
 - Bone marrow (hypoplasia/aplasia)
 - o GI mucosa (mucosal denudation)
 - Lens (radiation cataract changes)
- Case photographs/images of radiation burns

> Acute Radiation Syndrome (ARS) Demonstration

- Charting ARS stages with symptoms
- Case discussions based on past medical records
- Observation of hematology reports showing radiation-induced changes (CBC patterns)

Organ-Specific Radiation Pathology

- Slides or images showing:
 - Lung fibrosis post-radiation
 - o Liver cirrhosis due to radiation
 - Kidney damage (radiation nephropathy)
 - Thyroid gland changes post-radiation
- Radiological images highlighting these changes

> Fetal Radiation Effects

• Demonstration through charts, diagrams, and documented case studies of prenatal radiation exposure outcomes

➤ Late Effects & Secondary Cancers

- Case images or reports showing:
 - o Radiation-induced leukemia
 - o Solid tumors following radiation therapy
- Discussion of latency periods & dose correlation

Radiation Protection Demonstrations

- Use of personal dosimeters (TLD, film badge) in pathology/radiology labs
- Demonstration of lead barriers & shielding in work areas
- ALARA implementation in pathology imaging work

Record Keeping & Case Documentation

- Maintaining a radiation pathology practical record book
- Documenting slide observations & image interpretations
- Preparing short case summaries

RADIATION THERAPY MACHINES

THEORY

1. Introduction to Radiation Therapy Machines

- Evolution of radiation therapy equipment
- Classification of radiation therapy machines (kilovoltage, megavoltage, superficial, orthovoltage, teletherapy, brachytherapy)
- General requirements for a radiotherapy unit

2. Basic Principles of Radiation Production

- Physics of X-ray & gamma-ray production
- Bremsstrahlung & characteristic radiation
- Radioactive decay principles for therapy sources (Co-60, Cs-137, Ir-192)
- Linear accelerator beam production

3. Superficial & Orthovoltage Therapy Units

- Structure and components
- Energy range & beam characteristics
- Applications and limitations
- Patient positioning & safety

4. Teletherapy Machines

• Cobalt-60 Teletherapy Unit

- Construction & working
- Source characteristics and replacement
- o Beam collimation systems
- Safety features

Linear Accelerator (LINAC)

- o Components: electron gun, waveguide, accelerator structure, target
- Modes of operation (photon mode, electron mode)
- Beam flattening filters & multi-leaf collimators (MLC)
- o Image-guided radiotherapy (IGRT) integration

5. Brachytherapy Units

- Types of brachytherapy: low dose rate (LDR), high dose rate (HDR), pulsed dose rate (PDR)
- Remote afterloading machines

- Common sources: Ir-192, Cs-137, Co-60, I-125
- Applicators & treatment techniques

6. Simulator Units

- X-ray simulator structure & working
- CT simulator principles & advantages
- Role in treatment planning

7. Specialized Radiation Therapy Machines

- Stereotactic radiosurgery (SRS) units: Gamma Knife, CyberKnife
- Proton therapy machines (cyclotron, synchrotron)
- Tomotherapy
- Intraoperative radiotherapy systems (IORT)

8. Beam Modifying Devices

- Wedges, bolus, compensators, blocks, MLC
- Electron applicators & cones
- Patient immobilization devices

9. Quality Assurance (QA) of Radiation Therapy Machines

- Daily, weekly, monthly, annual QA tests for LINAC & Cobalt units
- Dosimetry checks
- Safety interlock verification

10. Radiation Safety & Regulatory Requirements

- AERB / IAEA guidelines for installation & operation
- Radiation monitoring devices (survey meter, area monitor, personal dosimeter)
- Emergency procedures for source leakage or malfunction

11. Maintenance & Troubleshooting

- Routine maintenance schedules
- Common mechanical & electrical faults
- Reporting and logging maintenance activities

12. Recent Advances in Radiation Therapy Equipment

- Volumetric modulated arc therapy (VMAT)
- Intensity modulated radiotherapy (IMRT) delivery systems
- Adaptive radiotherapy machines
- Artificial intelligence integration in radiotherapy machines

PRACTICAL

> Familiarization & Demonstration

- Identification of different radiation therapy machines (Cobalt-60, LINAC, Brachytherapy units, Simulators)
- Demonstration of basic machine components and control panels
- Orientation to treatment room layout and safety zones

> Machine Start-Up & Shutdown Procedures

- Pre-use checks for LINAC and Cobalt units
- Power ON/OFF sequence and warm-up procedures
- Emergency shutdown protocols

Cobalt-60 Teletherapy Unit Practical

- Source ON/OFF demonstration
- Collimator movement and field size selection
- Gantry and couch movement controls
- · Safety interlock demonstration

Linear Accelerator (LINAC) Practical

- Mode selection: photon and electron beams
- Energy level selection and verification
- Multileaf collimator (MLC) operations
- Beam shaping and field setup
- Daily output check procedure

> Brachytherapy Equipment Practical

- Handling and loading applicators (LDR/HDR)
- Remote afterloading system demonstration
- Radiation source storage and transfer
- QA of brachytherapy afterloader

> Simulator & CT Simulator Practical

- Patient positioning for simulation
- Marking of isocentre and reference points
- Imaging acquisition and transfer to treatment planning system
- Immobilization device usage

Beam Modifying Devices Handling

- Placement of wedges, bolus, compensators
- Field block cutting and positioning
- Electron applicator attachment

Quality Assurance (QA) Practical

- Daily machine QA checks (output, field symmetry, flatness)
- Monthly QA demonstration (mechanical accuracy, beam energy)
- Annual QA overview
- Use of QA tools: ionization chamber, electrometer, water phantom

Radiation Safety & Monitoring

- Use of survey meter and area monitor
- Checking personal dosimeter (TLD/OSL) readings
- Room radiation level measurement during operation
- Safe handling and storage of radioactive sources

Maintenance Demonstration

- Routine cleaning and inspection procedures
- Lubrication of moving parts (where applicable)
- Basic troubleshooting steps for common errors

Emergency Drills

- Source stuck in ON position simulated response
- Power failure during treatment safe patient removal procedure
- Equipment fault reporting and documentation

> Record-Keeping & Documentation

- Treatment logbook entry
- QA test documentation
- Radiation safety records and incident reporting

RADIOGRAPHIC PHOTOGRAPHY

THEORY

1. Introduction to Radiographic Photography

• Definition, scope, and importance of radiographic photography

- Historical development of radiographic imaging
- Role of photography in medical radiology

2. Photographic Principles

- Nature of light and image formation
- Photographic exposure (aperture, shutter speed, ISO)
- Lenses: types, focal length, resolution
- Depth of field and magnification

3. Photographic Materials

- Films: types of radiographic films (screen, non-screen)
- Film structure: base, emulsion, protective layer
- Sensitometry & characteristic curves (H & D curve)
- Intensifying screens: types, uses, care, and maintenance

4. Darkroom Techniques

- Darkroom layout and design
- Safe light types and uses
- Film processing: developer, fixer, washing, drying
- Manual vs. automatic processing
- Film storage and handling

5. Radiographic Image Recording

- Principles of image formation in radiography
- Factors affecting image quality (density, contrast, resolution, distortion, artifacts)
- Image sharpness and blurring
- Photographic copies and duplication

6. Digital Radiographic Photography

- Transition from conventional to digital systems
- CR (Computed Radiography) and DR (Digital Radiography)
- Image receptors in digital radiography
- PACS (Picture Archiving and Communication System) basics
- Image post-processing techniques

7. Radiographic Photographic Equipment

- Cameras and accessories for medical photography
- X-ray cassettes and grids
- Fluorescent screens and film-screen combination

• Automatic film processor

8. Special Techniques in Radiographic Photography

- Contrast media photography (barium, iodine-based studies)
- Motion studies and cine-radiography
- Angiographic photography
- Mammography photography
- Photographic documentation in radiotherapy

9. Quality Control in Radiographic Photography

- Film quality assessment
- Detection and prevention of artifacts
- Maintenance of darkroom & processing equipment
- Radiation protection in radiographic photography

10. Legal & Ethical Aspects

- Ethical issues in medical photography
- Confidentiality and patient rights
- Medico-legal value of radiographs

PRACTICAL

> Darkroom Techniques

- Demonstration of darkroom layout, lighting & safelight conditions
- Loading and unloading of X-ray films in cassettes
- Film handling techniques to avoid artifacts
- Film identification & marking methods

> Film Processing

- Preparation of developer & fixer solutions
- Manual film processing (developing, rinsing, fixing, washing, drying)
- Use of automatic film processor
- Demonstration of temperature & time control in processing
- Film storage & archival methods

> Intensifying Screens & Cassettes

- Mounting, cleaning, and maintenance of intensifying screens
- Handling and maintenance of X-ray cassettes
- Effect of screen-film combinations on image quality

Image Quality & Fault Analysis

- Identification of good vs. poor quality radiographs
- Recognition of common film faults (fogging, reticulation, scratches, stains, static marks, under/over exposure)
- Correction methods for film faults
- Preparation of photographic copies and duplicates of radiographs

> Radiographic Image Recording

- Demonstration of different exposure factors affecting density, contrast, sharpness & magnification
- Use of grids & beam collimation to improve image quality
- Practice in special positioning for better photographic output

Digital Radiographic Photography (Introductory Practical)

- Demonstration of Computed Radiography (CR) & Digital Radiography (DR) systems
- Scanning and digitization of conventional radiographs
- Use of PACS (Picture Archiving and Communication System) for image storage/retrieval
- Simple post-processing techniques (contrast adjustment, cropping, annotation)

> Special Procedures

- Demonstration of radiographic photography in contrast studies (Barium swallow, IVP, angiography – observation based)
- Practice in mammographic film handling (if available)
- Basic cine-radiography demonstration (if facility exists)

Quality Control & Safety

- Routine darkroom cleaning and maintenance
- Safe handling & disposal of chemicals
- Checking film screen contact using test tools
- Radiation safety precautions while handling radiographic films